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ABSTRACT

Chaotic dynamical systems such as the atmosphere can be characterized by their

associated geometrical structures in phase space that are known as strange attractors.

Time series data obtained from these dynamical systems must be sampled properly in order

to estimate the fractal dimensions of these strange attractors with the greatest possible

accuracy. The Smale-Williams attractor is used here because the value of the correlation

dimension for this attractor can be determined analytically. Two types of sampling

strategies are considered to determine how a time series might be best used to estimate the

characteristics of the attractor.

This attractor can be characterized by either a histogram of distances from the

origin to each point on the attractor or by an estimate of its correlation dimension.

Differences between histograms of a sufficiently long control series and subsets of this

series are used to quantify the accuracy of representations of the attractor. Differences

between analytic and estimated values of the correlation dimension are also used. Finally,

the independence of the time series data is quantified in a new way and the relationship

between the independence of sampled data and the accuracy of characterizations of the

attractor by histograms of sampled data or by estimates of the correlation dimension is

examined.

Data are sampled from a control series according to different strategies and the

accuracies of the characterizations of the attractor by histograms and by estimated
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correlation dimensions are assessed. Increasingly accurate characterizations of the

attractor by histograms are generally obtained by increasing the number of points sampled

rather than by varying the sampling strategy. If only a small number of points is sampled,

however, then an optimal sampling strategy can be found that yields the most accurate

possible characterization of the attractor. This optimal strategy is somewhat subjective

and entails sampling groups of consecutive points that are separated by large gaps of

unsampled data.

A correlation between the accuracy of characterizations of the attractor by

histograms and the independence of sampled data is suggested by some, but not all, cases.

In contrast, the accuracy of estimates of the correlation dimension of the attractor and the

independence of sampled data are not found to be correlated; however, much smaller

sample sizes are used than can be used to construct histograms. All the distances between

sampled points must be determined to estimate the correlation dimension and this number

of distances is proportional to the square of the number of points used. However, only the

distances between sampled points and a single point must be determined to construct a

histogram. It is therefore much more difficult to determine whether a relationship exists

between the independence of sampled data and the accuracy of estimates of its correlation

dimension. Consequently, no correlation between the accuracy of histogram

representations and the accuracy of correlation dimension estimates is observed.
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Chapter 1

INTRODUCTION

Irregularity is an essential characteristic of many natural hydrodynamic flows, and

also of many mathematical solutions to models of these flows. This irregularity appears in

highly stressed (high Reynolds number) flows and is characterized by three fundamental

properties: aperiodicity, instability, and the existence of strange attractors (Lorenz 1984).

The states of irregular flows do not repeat themselves exactly over time, and it is this

aperiodicity that most readily characterizes an irregular, or chaotic, flow. Much of the

irregularity of atmospheric flow originates from the fact that future states of a flow depend

on previous states in an unstable manner (Tsonis and Eisner 1989). Essentially, forcing

adds energy to the flow while dissipation removes it, thereby ensuring that the energy

cannot grow without bound. This competition between forcing and dissipation leads to

fluctuations in the energy that are chaotic owing to the strongly nonlinear interactions

inherent in the flow. Irregularity is therefore part of the intrinsic dynamics of the flow and

is not caused by unpredictable outside influences (Baker and Goliub 1990).
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1.1. Instability, Aperiodicity, and Strange Attractors

The first two fundamental properties of an irregular flow, aperiodicity and

instability, characterize natural flows on the broadest range of scales, from the

development of localized turbulence over seconds to the evolution of global climate

systems over eons. If these flows were periodic and stable, then deriving from a time

series of observations the equation that models a flow would be a relatively simple matter.

It would be necessary only to sample certain variables of the flow, such as the velocity or

temperature, at an adequately high rate to determine their amplitudes and the durations of

their periods. These periods could then be incorporated into fairly simple linear models of

the flow, and these models could be trusted to predict accurately future states of the flow.

However, aperiodicity and irregularity render such a simple approach to modeling

susceptible to erroneous predictions.

The irregularity inherent in the solution to a model of a hydrodynamic flow was

first demonstrated by Lorenz (1963). In this seminal work, aperiodic solutions were

obtained from numerical integrations of a deterministic system: a 3-component model of

shallow cellular convection. Lorenz observed that typically two solutions to this model

diverged from each other, even though they nearly coincided initially. This type of

instability in the solution, which has come to be known as sensitive dependence on initial

conditions, is the most fundamental property of irregular dynamical systems and does not

originate from roundoff or truncation error; it is inherent in any approximation (Lorenz



1984). It is because of this property, and because models can never be initialized beyond a

certain precision or certain temporal or spatial resolution, that future states of a natural

hydrodynamic flow, such as the atmosphere, can never be forecast for periods longer than

a certain bound because errors are guaranteed to grow and so to eventually overwhelm the

results.

The third fundamental property of an irregular and transient-free flow is the

existence of a strange attractor. Strange attractors are geometrical structures, constructed

from time series data, that represent a flow in a phase space of coordinates given by the

variables that describe the state of the flow, rather than in an Euclidean space given by the

variables for ordinary physical space and time (Lorenz 1984). For all periodic and

aperiodic flows, each point in the phase space represents the state of the flow at a given

moment, and so a trajectory that connects successive points represents the evolution of the

system (Tsonis and Eisner 1989). Depending on the nature of the dynamical system,

different types of trajectories are possible. In stable regimes, solutions to the model will

evolve either to a single state, which can be represented by a fixed point in phase space, or

to an exactly periodic solution, which can be represented by a closed curve or closed orbit

in phase space (Higgins 1987).

If the solution is aperiodic but bounded, then its trajectory will be closed only after

an infinite amount of time because the solution repeats only after an infinite amount of

time. The energy of a flow is constrained by the competition between forcing and

dissipation, so states of the flow described by individual points in phase space are
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restricted to a certain volume in that space. The set of points revisited at any scale by this

infinitely long trajectory is known as a strange attractor (Tsonis and Eisner 1989). In the

case of an atmospheric model, this finite region of space occupied by a strange attractor

may be said to represent the climate of the atmosphere. The trajectory in phase space of

an aperiodic flow cannot cross itself, because doing so would mean that the flow had

returned to a previous state and could not therefore be aperiodic. The infinitely long

trajectory usually does not exist in phase space as a topological manifold, but rather exists

as a fractal set (Tsonis and Eisner 1989).

A strange attractor can be characterized by its fractal dimension. The creation of

the fractal structure of a strange attractor may be imagined in terms of the stretching and

folding of a volume in phase space by the forcing and dissipation of the system (Nese

1987). This "stretching and folding" gives the fine leaf-like structure of the fractal. For

the calculation of the fractal dimension of a strange attractor from a sample of data to give

the best possible estimate, it seems reasonable that the data should be sampled in such a

way as to capture this fine structure. Fractal dimensions (noninteger values) have been

sought for a variety of hydrodynamic systems as evidence for the existence of strange

attractors. For at least one system, the global climate, the existence and value of a fractal

dimension is debatable. Several authors (e.g. Nicolis and Nicolis 1984, Fraedrich 1987,

Essex et al. 1987) have claimed its existence and calculated its value while others have

failed to find such a dimension (e.g. Grassberger 1986, Krishna-Mohan et al. 1989). The

latter two have cited deficiencies in the data used as arising from the manner in which the
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data were sampled. This controversy underscores the necessity for developing appropriate

sampling strategies.

1.2. Dimensions of Attractors of Modeled and Natural Systems

Different fractal dimensions of attractors generated by a variety of nonlinear

models, laboratory flows, and historical data series have been calculated. For example, the

value of the correlation dimension of the Lorenz shallow convection model has been

estimated to be 2.06 (Sparrow 1982), while dimensions for the Lorenz system and 7- and

11-component spectral models have been found by Nese et al. (1987). Brandstater et al.

(1983) have determined the value of the correlation dimension for a turbulent Couette-

Taylor laboratory flow to be between 4 and 5. The correlation dimension estimated for

the flow within a rotating annulus in the regime of geostrophic turbulence was determined

by Guckenheimer and Buzyna (1983) to be between 7 and 12. Henderson and Wells

(1988) used 500-mb height index values (differences between the zonally averaged

500-mb heights at 60 IN and 30 'N) and found a value of the correlation dimension for

this series to be approximately 6.5. The same authors also estimated the value of the

correlation dimension of a time series of gust front vertical velocities to be approximately

4.0. Hense (1987) examined rainfall amounts and sea surface temperature data from the

Pacific Ocean and found an attractor dimension for the Southern Oscillation to be between

2.5 and 6.0.
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Values for correlation dimensions have also been calculated from climate data,

although these values are not entirely unassailable. The value of the correlation dimension

for oxygen isotope ratios from the equatorial Pacific deep sea core V28-238 for the past

one to two million years has been calculated by Nicolis and Nicolis (1984) to be

approximately 3.1. Because of this result, they conclude that only 4 independent variables

would be required to model the global climate. Their estimate of this dimension is based

on 500 data points separated by 2,000 yr. The raw data of this core consists of only 184

points, and the remainder of their data is interpolated from the raw data. Fraedrich (1987)

also concluded that a climate attractor exists and that the approximate lower bound of the

correlation dimension of this attractor is between 4.4 and 4.8. His estimate is based on

182 values of eastern equatorial Atlantic oxygen isotope ratios that extend over 775,000

years. Essex et al. (1987) examined 12,084 values of 500-mb geopotential height from

1946 to 1982 and found an attractor dimension of approximately 6.0. They claim this

supports the existence of a climate attractor.

The results of Nicolis and Nicolis (1984) have been questioned by Grassberger

(1986) who used the same V28-238 core data as Nicolis and Nicolis (1984), but only used

230 points separated by 5,000 yr in the calculation. Although data from the same core

were used, Grassberger did not find any such indication that a climate attractor exists. To

substantiate this conclusion, data from a second core, V28-239 were also used in an

attempt to find a dimension for a climate attractor, and again none was found. An

examination of tree-ring data covering the last 7,100 yr also failed to reveal any sign that
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such a climatic attractor exists. Grassberger (1986) interprets the results of Nicolis and

Nicolis (1984) as being due to the highly correlated nature of the interpolated data they

used in their calculation. Krishna-Mohan et al. (1989) also examined the V28-238 core

data and found no indication that a climatic attractor exists. They conclude that the data

set used by Nicolis and Nicolis (1984) was too noisy and was not sampled frequently

enough to draw such a conclusion.

The results of Grassberger (1986) and Krishna-Mohan et al. (1989) underscore the

importance of choosing the proper sampling rate and strategy in selecting the data that can

be used to make a meaningful estimate of the correlation dimension. The correlation of

interpolated data used in the calculation of Nicolis and Nicolis (1984) enabled them to

conclude that a climate attractor exists, while Grassberger found no indication for this

attractor. Krishna-Mohan et al. concluded that the sampling rate used to calculate the

dimension for a climate attractor was too low. Essex et al. (1987) caution that their

results may not be globally valid because the data sampled were restricted to values from

eastern North America. The short time scale (37 years) they used may also cast doubt on

their conclusion that a climate attractor exists.

1.3. Sampling and Estimates of Attractor Dimensions

As is evident from the controversy surrounding the possible existence of a climate

attractor, one of the central problems in quantifying an attractor, or deciding whether it
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even exists, is to develop sampling strategies that optimize the quantity and quality of the

data used in the estimation. Therefore, when sampling time series data from which a

dimension will be calculated, a sampling strategy should be used that ensures that samples

are uncorrelated but sampled in sufficient number. Choosing uncorrelated data may be

necessary to guarantee that points do not contribute redundant information, and using

large enough sample sizes may be necessary to capture as much detail of the attractor as is

possible.

Calculations of dimension estimates are numerically intensive, and so there is an

interest in keeping the number of points used as low as possible without sacrificing the

quality of the estimate. Estimates of the dimensions of fractal structures entail the

computation of distances between points. The number of distances increases as the square

of the number of points, so the penalty for increasing the number of points is severe.

Conversely, enough points must be sampled to estimate a dimension accurately. These

two conflicting requirements can be ameliorated by a sampling strategy that optimizes the

quality of the data used.

If the number of points to be used in estimating a dimension is restricted by the

availability of data or by computational practicalities, then the pattern of sampling that

should be used to approximate the attractor must optimize the estimate. For a periodic

solution, sampling at a constant rate is sufficient for modeling the flow. It does not

necessarily follow from this observation, however, that periodic sampling will be the best

approach for reconstructing a strange attractor. If a flow is aperiodic, then many scales of
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motion exist within the flow. Periodic sampling may capture the details of only certain

scales while missing the details of flows that exist on scales related to higher frequencies

than those that can be captured at the sampling rate used. If the number of points used is

constrained for any reason, then the only alternative is to use a sampling strategy other

than sampling at a simple fixed rate. The leaf-like structure of strange attractors suggests

how these strategies can be developed. The points sampled should be distributed among

the leaves so that each leaf is represented in as much detail as the fixed number of points

will allow. Because the leaves are distributed within the attractor in a fractal pattern, the

optimal sampling strategy must be related somehow to this fractal structure. The points

are sampled from a lime series, while the attractor represents this time series in a phase

space. A temporal sampling strategy must be developed so as to capture this fractal

spatial structure. To do so, the sampled points must be uncorrelated; by choosing

uncorrelated points, as many leaves as possible will be represented because each point will

represent a different leaf

Having accurate estimates of attractor dimensions is necessary for a variety of

reasons. If the dimension is estimated accurately and confidently, then the existence of a

strange attractor for the hydrodynamic system may be accepted. Although the magnitude

of this dimension may not be directly correlated with the number of independent variables

necessary to model the system, its magnitude does give some indication of the relative

complexity or simplicity of the system. The predictability of the system can be determined

from its Lyapunov exponents, which can be estimated from the same sample of points as
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those used to estimate dimension. Consequently, an accurate estimate of the dimension

can be used to certify the quality of the data used to calculate the Lyapunov exponents,

thereby leading to the most accurate estimates of the predictability of the system. The

purpose of the research discussed in this thesis is to gain some insight into finding optimal

strategies for sampling data used to estimate a fractal dimension. A simple dynamical

system will be studied, the correlation dimension of which can be determined analytically

and which can be used as a basis for assessing the accuracy of the dimension estimate and

of the quality of the sampled data. It is hoped that the strategies developed and compared,

if not directly applicable to other dynamical systems, will at least provide a basis for

developing optimai strategies for other systems.
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Chapter 2

METHODS OF ANALYSIS

The overall objective of this research is to determine the best approach for

sampling a time series that approximates a chaotic attractor. It is not possible to generate

the infinitely long series of points that determines an attractor; therefore, a sufficiently long

control series of points must be generated to approximate the attractor. Subsets of points

can be sampled from this control series using a variety of strategies, and estimates of the

value of the correlation dimension v of the attractor can be calculated from these subsets.

If the dimension of the attractor can be known analytically, then values of the dimension

calculated from the sampled subset can be compared with this known value. The

magnitude of the correlation dimension error between that for the sampled data and the

known value can be used to compare the effectiveness of different sampling strategies. To

be usefld in this study, other characterizations of model output, such as the dependence of

samples and frequency distributions of distances between points representing the attractor,

must also vary sensitively with sampling strategy.

An attractor whose correlation dimension can be determined analytically is the

Smale-Williams hyperbolic attractor (Smale 1977). This is a discrete dynamical system

that therefore has the additional advantage of not requiring the use of derivative
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approximation techniques such as those required for solving systems of differential

equations. Although it is not a simple model of a meteorological process such as

convection or global circulation (e.g., Lorenz 1963, 1984), the Smale-Williams attractor

satisfies all the above sensitivity requirements.

2.1. The Smale-Williams Attractor

The Smale-Williams attractor, or solenoid, is described by Smale (1977) and is

illustrated schematically in Figure 2.1. This dynamical system is a map (D that carries each

point (x,y) on any transverse disc of an initial solid torus onto a point (i, j) on a thinner

and longer embedded image torus by winding the initial torus an integral number n times

around its center hole. (In Figure 2.1 this winding number n is 2, and below the case of

winding number 3 is considered.) Because of this multiple winding, the intersection of

each cross sectional transverse disc of the original torus and the image torus consists of n

new disjoint discs, each with a radius equal to the radius of the initial disc shrunk by a

factor P3. Applying the map twice in succession to the original torus produces a new torus

winding n times within the image torus and so n2 times within the original torus.

Repeating this procedure produces a family of nested tori, each winding n times within its

predecessor.

With each iteration, the map (D stretches the torus by a factor equal to n in one

direction while contracting its radius by ft. This stretching and contraction of the torus by
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Figure 2.1. Schematic depiction of the Smale-Williams attractor showing four transverse discs of the

initial torus and cross sectional discs resulting from two iterations of the map 4). The lighter lines inside

the initial torus show the overall effect by the map of winding that torus into an image tonis. Curved

arrows depict the first mapping of individual points on the transverse discs of the initial torus to points on

the image torus.
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winding leads to the expectation that in the limit the structure of the cress sectional discs

should be fractal. The successive image tori may be regarded as higher and higher

resolution representations of this attractor. Thus, the cross sections produced by this

multiple winding leads to Cantor dust embedded in the corresponding transverse disc.

This Cantor dust is unlike the standard Cantor set in that it does not lie in a single line, or

even in a single smooth curve in the transverse disc. This Cantor dust is embedded in 2

dimensions although its intrinsic dimension is not 2. This intrinsic dimension is found in

Section 2.2.

2.1.1. The Smale-Williams Attractor in Euclidean Space

The Smale Williams dynamical system can be identified with a standard torus

embedded in Euclidean X-Y-Z space; that is, values of x, y, and 0 from the map

described below in Section 2.1.2 can be used to parameterize the standard torus. Figure

2.2 illustrates the use of these values for a point P in the construction of a standard torus.

The standard torus is obtained by rotating a disc about the Z axis, where the disc is

perpendicular to the X-Y plane and is at an angle 0 from the X-axis. The center C of

the disc is at a distance R from the origin 0 of the torus and has coordinates

(RcosO,Rsin 0,0). The disc has radius r, with 0< r < R. An x'-y' coordinate system on

the disc can be specified and the values of x and y can be used to parameterize this disc.
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Figure 2.2. The coordinate system representing the Smale-Willhams attractor on a standard torus. Here L.
R, xr, yr, and 9 are used to calculate the distance between point P on the standard torus and the center of

the torus.

Because the inequality x' 2 + •I2< r2 holds, point P on the disc will have the coordinates

(X',A = ( xr, yr) with x 2 + y2 •-1. As can be seen in Figure 2.2, the projection P' onto the

X -Y plane of point P is at a distance R + xr from the origin of the torus, and the point P

is at a diistance yr above the X -Y plane. The coordinates of P in the Euclidean space are

therefore given by ((R +xr)cos9,(R÷ xr) sin ,yr). The distance L of P from the origin

is the hypotenuse of a right triangle whose length is therefore

L = V(R +xr )2cos2 0+(R+xr )2 sin 219+ (yr)2.(21)

This equation can be simplified to
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L= J(R+xr)2 +y2r2. (2.1.2)

Histograms of this distance are discussed in Section 2.3 as providing a means for

quantifying the attractor structure.

2.1.2. The Map Functions of the Smale-Williams Attractor

Any point on a disc can also be defined using coordinates (u, z), which are related

to (x,y, O) as shown below, subject to the conditions that u and z are complex, that

lul = 1, and that Izi-• 1. The particular case of the map that is considered has the form

0:(u, z) F-4 (ai,•) (2.1.3)

where a] = u3and , = au + 3z, under the constraints that 0 < a, 0 < P, and a+JP< L.

Because Jul = 1 holds, mapping u to u3 changes the complex value of this coordinate

without changing its magnitude. The version of this attractor described above in Section

2.1.1 and in Smale (1977) uses a winding number of 2. Owing to the binary processing of

data by the computer, this version of the attractor spuriously approaches a fixed point.

Choosing a winding number of 3 yields a chaotic time series because the cube of a value

can only be approximated numerically. Mapping z into a u + 13z, together with the

constraints 0 < a, 0 < 13, and a + P < 1, contracts the initial value of z by a factor P3 while

adding a translational term.



17

The complex values of u and u3 can be rewritten using Euler's relationship as

u = cos 0+ isin 0 (2.1.4)

u3 = cos6+ isin b (2.1.5)

where 6= 36. The substitution of 30- 21rn', where n' is an integer, for & yields the

same values, as follows from application of the trigonometric identities

cos0= cos(O- 2irn') and sin&= sin(&- 21rn'). The appropriate value of n' here is given

by n'= [O/2nj], where the brackets denote the largest integer part. This trigonometric

conversion of u can be further parameterized by allowing 0 = 2 rt and 6 = 2 rit; thus

(2.1.2) and (2.1.3) can be rewritten in terms of t and t=3t as

u = cos(2irt) + isin(2irt) (2.1.6)

u= cos(2(t'- [ + isin(24(t'- [it)). (2.1.7)

Therefore, if i = Un+1 = u3 then from (2.1.6) and (2.1.7) it is sufficient, although not

necessary, to require that

tn+1 = 3tn -[3tn]. (2.1.8)

The complex value of z can be expressed as z= x + iy, and so , = Zn+I = au + PZ

can be written using (2.1.4) as

= ae 6 +±fz = a(cos9+isinO) +fl(x+ty). (2.1.9)
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If(2.1.9) is separated into real and imaginary components, then Z^ = i + ij may be

expressed in terms of x, y, and 0 via

i. = acosO+flx (2.1.10)

k = asin 0+ y. (2.1.11)

It follows from (2.1.6), (2.1.8) and (2.1.9) that the map defined by setting

= and zn+1I = atUn +j Pzn may be represented by the equations

tn+= 3tn -[3tn]

Xn+! = acos(2rtn) + I xn, (2.1.12)

Yn+ I= asin(2irtn) + PY

where t = tn, 0= 27tn, and tn+l; X = xn and i = xn+l; and y = yn and =yn+l. It

may appear that because the original two variables are complex, the final form of these

functions should have produced a map in a 4-dimensional space. The constraint that

lul = 1 restricts its domain to the 1-dimensional domain of a circle, and so this map exists in

a 3-dimensional space.

Values ofx and y from (2.1.12) are shown in Figure 2.3 for ao= 0.45 and

,P = 0.3. Pairs of x and y are plotted without regard to their respective values oft, and so

this figure represents a projection of all transverse discs of the torus onto a single cross

section.
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Figure 2.3. Values of x and y for 1000 points of the Sinale-Willianis attractor. Values of t are not

considered in the selection of these points. The values of x and y shown represent points on 1000 differe•nt

transverse discs of 1000 iterations of the inap projected on to a single disc rather than points on a single

transverse disc.
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2.2. The Correlation Dimension of the Smale-Williams Attractor

The correlation dimension v of the Smale-Williams attractor can be shown to be

equal to its box-counting dimension (Mori and Fujisaka 1980). A heuristic approach can

be employed to calculate the box-counting dimension dB of this attractor. This argument

is illustrated in Figure 2.4, and begins with a box B(e) that has sides parallel to the x, y

and t axes and has length E along each side. After one iteration (!B(e) of the map for

which the winding number is 3, this box is stretched to a length 3 E along the t axis and

contracted to lengths fk along the other two axes. The new box (IB(e) can be covered

(approximately) with k boxes, each having sides/Ji. The value of k is given by

k 3fi2e3  3 (2.2.1)

A measure of the mass density p of points on the attractor contained by the boxes

B(e) and O1B(e) can be related to dB in the following manner:

p(B(e)) = _dB (2.2.2)

=(4pB(E)) = k(p)dB. (2.2.3)

The number of points contained in OB(e) is the same as that contained in B(E), and so

EdB = kdBEdBd, or 1 = kfldB. The value of dB is found by substituting 3/fl for k in
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1 = kpdB, Taking logarithms of this result yields the analytical value of the box-counting

dimension dB of the Smale-Williams attractor, namely

dB = 1+In 3/ln(l/P). (2.2.4)

The expression for the Hausdorff dimension dH of the Smale-Williams attractor is

determined by Mori and Fujisaka (1980) to be equivalent to (2.2.4). Falconer (1990) also

shows that dB = dH for this attractor.

The Smale-Williams attractor is a hyperbolic dynamical system and so it admits an

invariant and ergodic mass distribution y (Smale 1977). Therefore, it follows from

elementary ergodic theory that the correlation dimension of a small subregion of the

Y

1 24k]

E-\
B(e) DB(e)

Figure 2.4. The change of a volume B(e) covering a portion of the Smale-Williams attractor after one

application of the map P. The map takes this portion of the initial torus and stretches it to 3 times its

length while contracting its cross sectional dimensions by P. The volume DB(e) required to cover the

points after one application of the map is given by k boxes of volume (pe)3.
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attractor, i.e., the local correlation dimension v(x), is essentially constant with respect to

mass density (Petersen 1971). If v(x) is essentially constant, then it is equal to the

Hausdorff dimension dH (Falconer 1990) and is also equal to the correlation dimension v

(Pesin 1992). Clearly, because v(x) is essentially constant, it follows for the Smale-

Williams attractor that

d8 = dH = v= I+ In3/ln(1/3). (2.2.5)

This expression can be used to determine a standard value against which estimates of the

correlation dimension from a set of points representing the attractor can be assessed.

2.3. Mean Absolute Difference

A simple and inexpensive way of quantifying the structure of an attractor is to

construct a histogram of distances between points on the attractor and a single specified

point in the phase space (Doran 1991). The number of distances in individual intervals or

bins of the histogram varies as the time series is lengthened or the sampling strategy is

changed. Thus, differences in sampling strategies may be related to differences between

histograms constructed from these data and the histogram of distances obtained from the

control series.

The torus can be reconstructed using the values of x, y, and 0 once scaling values

of R and r are chosen so that the attractor can be visualized most clearly (Section 2.1.1).
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Thus, values for R and r were specified as 4.0 and 1.0, respectively. Values for L

(2.1.2) were then distributed into 128 separate bins, and their histograms plotted. The

numbers of distances in each histogram of sampled data and the data of the control series

were then normalized so that the total number of distances in all histograms would be

equal and so that differences between histograms of different sample sizes could be

compared. In this case the mean absolute difference Dab between two histograms Ha and

Hb is defined by

128-

where Ha(4i) and Hb(4i) are the normalized numbers of distances L, in each bin i of

the two histograms. The histogram for a control series of 1,048,576 points is illustrated in

Figure 2.5. Mean absolute differences Dab between two histograms Ha and Hb have

been used successfully to quantify differences in the structures of subsets of points from

attractors (Doran 1991).

2.4. Independence of Sampled Data

In order to extract information most efficiently from a sampled data set, it is

necessary that the individual sampled points be independent of the other sampled points.

The rate at which points following a given point in a time series decorrelate therefore
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Figure 2.5. Histogram of 1,048,576 distances L (2.1.2) for the Smale-Williams attractor. The total

number of distances in the histogram is normalized to 131,072, so that each distance on the ordinate

actually represents eight distances in the torus.
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influences the possible ways in which data may be sampled. If decorrelation takes a long

time, then samples must be taken at longer intervals than if they require only a few

iterations to decorrelate. Autocorrelation would be one method for determining how

many time steps between retained points must occur before sampled data are independent

of each other. Here is presented an alternative method for obtaining the most efficient

sampling strategy.

The sampling method proposed here is based on the independence of groups of

sampled model output from which histograms are constructed. This method is a much

more expedient way of determining the independence of sampled data because the

independence of groups of data from other groups is determined rather than the

independence of sampled points from other sampled points. Fewer comparisons must be

made because a smaller number of groups than of points is used. This grouped data can

be sampled according to different strategies. The number of consecutive points within

subsections, the gaps between points within subsections, and the gaps between subsections

can be varied in any pattern to define individual strategies. Many more sampling strategies

may be devised and tested if the method of assessing their efficiency is easily implemented.

A time series of distances L1, L2, .- ,LN can be constructed for the N points of a

sufficiently long control series using (2.1.2). This control series is divided into m

subseries of I/m points each, and histograms of x bins are formed from each subseries.

These subseries of I/m points are chosen according to different sampling strategies and

comparisons of their associated histograms with each other can be used to assess each
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strategy. For a given strategy, the histograms of sampled model data from each of the m

non-overlapping subseries of the control series may be constructed where

H11(x) Histogram of LI,L2,..., L

H 2 (x) Histogram of L4+ 1 , LG+ 2 ,'"-,4LG+I (2.4.1)

Hm(x) Histogram Of I(m-1)G+,L(m-1)G+2,'.,I(m-1)G+1

In (2.4. 1) G represents the gap between the initial points of the subseries of the control

series and is the same for each sampling strategy. A sequence S(m) of distances

composed of all values of L4 used to create the histograms defined in (2.4.1) can be used

to produce the average, or control, histogram of all the sampled data. An equivalent way

to find this average histogram HS(m)(x) is simply to average the histograms Hi via

Hs(m)(X) - Hi(x). (2.4.2)
m i=l

This mean HS(m)(X) can be compared with the histogram HS(m-.)(X) using an integral

form of the definition of Dab (2.3.1)

1

Dab = {(HS(m)(X) -HS(mI)(X)) . (2.4.3)

0

If the integrand of (2.4.3) is expanded, then this expression for Dab becomes
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Dab=( (Hx)HS(m)(X))+ 2 *+(Hm,() HS(m)(X))dxI

I

j~n( +) 2Sm()(IX -H(m)(X))2dX 0 24

0
(2.4.4)

only if the cross terms disappear, i.e.

I

for all i,j such that 0•< i < j _< m. This latter condition (2.4.5) will be valid if the samples

are independent. This condition is anticipated in the limit owing to the ergodic mixing that

occurs in the Smale-Williams attractor (Smale 1977); however, this vanishing should never

be expected to occur in practice. This expression can be used to define a dependence

measure 141, as is discussed below. Although this quantity would not be equal to zero, its

value would be small and may be taken as a measure of the dependence of the subsets of

sampled data. The larger the magnitude of 4 is, the more dependent the samples may be

said to be, and so 141 may be used as an index of dependence.

The mean squared difference between two samples will be small if the samples are

large enough. To determine how large a sample needs to be, a priori error bounds can be
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set, such that if Dab is within these error bounds then the sampling can be said to be

adequate. The variance of the sampled data in the m subsections can be used to establish

these error bounds. Clearly, this variance is related to the independence of sampled data:

the greater the independence of the sampled data, the smaller the variance.

The variance VS(m)(x) of the m histograms constructed from the data within each

of the subsections of the control series is defined by

VS(m) W [(HI(x) - HS(m)(X)) 2 +. .+(Hm(x) _ HS(m)(X))2] (2.4.6)

and the total variance is defined by

!

V,' =JVS(m)(x) dx (2.4.7)
0

The total variance can be substituted into the first term of the right side of (2.4.4) to

obtain an expression for Dab:

Dab =2 + + M-l)J f(Hm(x)- IIS(m)(X)) 2 dx. (2.4.8)

From (2.4.6) it is apparent that

mVs(m)(x) = [(Hi(x) - HS(m)(X)) 2+...+(Hm (x) _ HS(m)(X))] > (Hm(x) - HS(m)(x))2

(2.4.9)
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From this inequality and the definition of the total variance (2.4.7), the mean squared

difference can be expressed as an inequality by substitution of these into (2.4.8):

D 1 [ ) 1 1

Dab (m-1) 2 0 gS(m)(x) A (x) (2.4.10)

Integration and cancellation of like coefficients in (2.4. 10) leads to:

D 2 <'Iv (2.4.12)

From (2.4.11) it is apparent that if m - oo then Dab - 0 if the samples are

independent and if VI is bounded. This argument is valid only if the data from which them

histograms are constracted are independent and the cross terms vanish, i.e., if (2.4.5)

holds. Because this can never be expected to be strictly true, some measure of

dependence is necessary to determine the degree to which (2.4.12) is valid. Minimizing

the dependence measure suggested by (2.4.5) can reasonably be expected to minimize the

mean squared difference.

The above argument can be extended to four histograms of samples i, j, k, and

I via a proposed analogous expression for the dependence

f[Hx)- Hs*(m)(x)) - (Hj(x) - HS(m)(x))][(Hk,(x) - HS(m)(x)) - (Hi(x) - HS(m,)(x))]dx
0

(2.4.12)



30

where i ; j ; k # 1. This expression can be simplified and used to define the dependence

measure 4, defined by

S=f(Hi(x)- Hj(x))(Hk(x) - H1(x))dx. (2.4.13)

0

Equation (2.4.13) provides a method for determining the dependence of data within

samples by comparing all combinations of four subsets of the sampled data from all the

subsets. The magnitude of 4 determines dependence and so 191 is used. If the data are

independent then 4 = 0, and they are nearly so when 141 is small. No knowledge of the

true histogram is now necessary.

2.5. Correlation Dimension Estimations from Sampled Data

The correlation dimension v takes into account the number of pairwise

correlations of points on the attractor with other points on the attractor that fall within a

sphere of radius e. The number of pairwise correlations of points within a distance s of

each other is specified by the correlation function C(e) (Grassberger and Procaccia 1983):

N--+ N, j=!
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In this expression, 1xi - Xj denotes a generic distance between two points xi and xj on

the attractor. The specific distance measure used to calculate the correlation function for

the Smale-Williams attractor is defined below in Chapter 3. In (2.5.1) 0 is the Heaviside

function given by 0(y) = 1 if y Ž 0 and 0(y) = 0 if y < 0. The 3-element column vectors

xi and xj specify the positions of the ith and jth attractor points in x-y-t space. Thus

the correlation function yields the number N of distances between points separated by a

distance less than e, normalized by the total number of points included in the set that is

used to represent the attractor. Values of E up to the maximum distance between any two

points on the attractor must be considered to determine the correlation function. The

correlation dimension v is assumed to be related exponentially to the correlation function

C(e) via

C(e) 0Cev. (2.5.2)

The traditional approach for determining the correlation dimension is to plot the

natural logarithm of C(E) against the natural logarithm of e and then to estimate the slope

of this line. As an alternative to this method, the following approach is used in this study.

An arbitrary function F(e) can be included to express (2.5.2) as an equality

C(e) = F(e)ev. (2.5.3)

Taking logarithms of this expression gives

ln F(e) = lnC(e)- vln(e). (2.5.4)
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This expression can be used in either of two ways. If the correlation dimension is known

analytically, then its value can be used in (2.5.4) to solve for In F(e). The value of In F(e)

should be a constant equal to In F[el, E2] over the closed interval [El, e2 ], and so standard

deviations of In F(E) over the interval [Ei,e 22] for different characterizations by

correlation dimension estimates can be used as a basis for comparing those

characterizations. Alternatively, the value of v can be adjusted so as to minimize the

variation of values of In F(e) within the interval [el, E2], thereby providing a way of

estimating the correlation dimension if it is not known analytically. Although the second

method is considered briefly, in this study the first approach is used because the analytical

value of v is known (Section 2.2).

2.6. Higher Moments of the Correlation Function

A second method for estimating the value of the correlation dimension is described

by Wells el al. (1992). This method incorporates higher moments p of the correlation

function as independent sources of information. In this approach, higher moments of

distances between points r that are within a distance E of other points are normalized and

summed to define the moment function M(p, e, NT), given by

E NT ) E r Eand i,] NTJ (2.6.1)
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where NT is the total number of points sampled and N(e) is defined as the number of

distances rij = Ii - Xj between points xi and xj that are less than E. The moment

function M(p, E, NT) can be used to determine the correlation dimension from the relation

v= rim lim pM(p,',NT) (2.6.2)1:-).oNT-1-0 1 - M(p,E, NT)*

Values for v calculated using (2.6.2) (without taking limits) are then plotted against

values of e. The forms of these curves are compared with the analytical value of the

correlation dimension for data sets obtained using different sampling strategies.
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Chapter 3

QUANTITATIVE AND QUALITATIVE SAMPLING EXPERIMENTS

A given set of points from an attractor may represent that attractor with greater or

lesser accuracy. This accuracy depends on two general considerations: the number of

points that are used and the manner in which these points are sampled from a control

series of points. To assess how these two considerations affect the accuracy of samplings

of the Smale-Williams attractor, the results of quantitative and qualitative sampling

experiments are presented. To determine the improvement in accuracy with increasing

sample size, mean absolute differences Dab between normalized histograms for series of

different lengths are examined. The dependence measure 141 for sampled subseries of

points within a control series is then considered as a means for evaluating different

sampling strategies. Two general types of sampling strategies are examined. In Type I,

the number of points to be sampled from the time series is fixed, but the distribution of

windows within the time series from which the points are sampled is varied to create

different strategies. In Type II, the distribution of windows within the time series remains

fixed, while the number of points taken from each window is varied. Mean absolute

differences Dab between histograms of the sampled data and the control series are

determined and then compared with the dependence measure 191 for the sampled data.
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3.1. Series Length and Mean Absolute Difference

The accuracy of the representation of an attractor by a series of points increases

with the number of points. The fact that the mean absolute difference Dab between

histograms of lengths N and N + AN, where AN is a fixed increment of points, decreases

with increasing N can be used to determine the number of points needed to characterize

the attractor accurately (Doran 1991). An initial experiment was designed to determine

for the Smale-Williams attractor an appropriate number of points to be used to construct a

control histogram for sampling strategy experiments, as well as to identify the nature of

the rate of decrease of Dab with increasing N. To determine this rate of decrease, time

series of values of x, y, and t were generated for series having as many as five million

points. For this portion of the study, the values of a and P were set to 0.45 and 0.30,

respectively. All calculations were performed using double precision on an IBM 370

mainframe computer. The same initial conditions were used in all cases, namely x0 = 0.1,

Yo = 0.1, and to = 0.2. The first million points of these series were always discarded to

ensure that any transient signal present in the series is negligible. The series used therefore

ranged in length from N= 50,000 to N= 4,000,000 points in 50,000-point intervals. For

each series, histograms based on the distance function L (2.1.2) were constructed and

then normalized so that the distribution among bins is preserved and the area of the

histogram is that which would be given by a histogram of 100,000 distances. Mean

absolute differences Dab between these normalized histograms were next calculated



36

according to (2.3.1). Values of AN from 50,000 to 1,000,000 in 50,000 point increments

were used to determine the mean absolute difference Dab between series of lengths N and

N + AN. The relationship between the magnitude of Dab and the varying series length N,

with AN held constant, is illustrated by plotting Dab as a function of N. The resulting

family of curves for all values of AN is shown in Figure 3.1.

To ascertain the rate at which Dab decreases with increasing series length, linear

regressions of Dab on series length N were performed for each separation interval AN.

Doran (1991) found that variations of Dab with increasing N for the Lorenz attractor

were best modeled by an exponential decrease of the form

Dab= Aexp(-RN) + B. (3.1.1)

For the Lorenz attractor he found that Dab decreased to a positive floor value B rather

than to zero as might be expected. An alternative model of the rate decrease would be a

power law in which the Dab between successive histograms is proportional to the series

length raised to a negative exponent -R whose magnitude R is greater than unity, i.e.,

Dab AN-R +B, R>I (3.1.2)

In order to determine whether an exponential or a power law relation better models the

rate of decrease of Dab , both log-normal and log-log linear regressions of the data were
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Figure 3.1. Mean absolute difference Dab as a function of series length N and separation interval AN.

Individual curves are for each separation interval AN, from 50,000 points (nearest curve) to one million

points (farthest curve), increasing by 50,000 points for each curve. The sharp drop-off on the right side of

the figure is artificial and caused by the lack of data for computing differences.
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performed. The values of the slopes R, intercepts InA, and regression coefficients r2 for

the results of the most successful linear regressions are presented in Table 3.1.

Values of the regression coefficient r2 can be used to determine which of the two

models better accounts for the decrease of mean absolute differences Dab with increasing

values of N. For both the exponential model and the power law model, the best values of

r2 were obtained when the floor value B vanished. The range of values of r2 for the

exponential model increases from 0.81671 to 0.84535 with increasing values of AN.

Results obtained for the power law model account for much more of the variation of Dab

with series length as indicated by consistently higher values of r 2, but these values of r2

decrease from 0.99261 to 0.93445 as values of AN increase. Increasing the value of AN

corresponds to decreasing the number of pairs of values of Dab and N available for the

calculation of regression statistics. For the case of AN = 50,000, 40 pairs of values of

Dab and N are available, while for the case of AN = 1,000, 000, only 21 such pairs are

available. Increasing the number of points in the regression increases the value of r2 for

the power law model, but decreases r 2 for the exponential model. Nevertheless for the

fewest pairs of values, the value of r2 for the power law model is still significantly greater

than the value of r 2 for the exponential model. On this statistical basis, the power law

model of the decrease of mean absolute difference Dab with series length N is accepted

for the Smale-Williams attractor.

It is easy to argue that the power law model is superior to an exponential model

for small values of N. For a power law model in which the floor value B is zero, one
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Table 3.1. Regression statistics for the power law (3.1.1) and exponential (3.1.2) models of the rate at

which the mean absolute difference Dab decreases with increasing series length N. The results presented

in this table are for the most successful regressions for both mnodels, those obtained for the case of B = 0.

The number of pairs of values of Dab and N are indicated in the far left column.

Exponential Power Law
lnDab = -RN + lnA lnDab = -RInN+InA

Correlation Correlation
Pairs Interval R InA Coefficient R InA Coefficient

AN (Xl0-7) r2 r2

40 50000 6.89336 -0.77477 0.81671 1.04236 12.70119 0.99261

39 100000 6.68548 -0.47032 0.81777 1.06414 13.38043 0.98118

38 150000 6.60951 -0.26432 0.82611 1.10022 14.13660 0.98624

37 200000 6.50738 -0.13157 0.83057 1.12303 14.63363 0.98236

36 250000 6.39487 -0.03653 0.83227 1.14087 15.02271 0.97848

35 300000 6.33700 0.05036 0.83325 1.16469 15.47756 0.97372

34 350000 6.29164 0.12921 0.83331 1.18829 15.91817 0.96827

33 400000 6.23555 0.19690 0.83136 1.20883 16.30556 0.96252

32 450000 6.21451 0.26348 0.83306 1.23283 16.73387 0.95866

31 500000 6.18019 0.32251 0.83231 1.25380 17.11373 0.95373

30 550000 6.17865 0.38490 0.83335 1.27922 17.55397 0.94946

29 600000 6.19206 0.44771 0.83322 1.30771 18.03579 0.94521

28 650000 6.17908 0.50140 0.83244 1.33067 18.43439 0.94154

27 700000 6.17958 0.55570 0.83373 1.35546 18.85695 0.93981

26 750000 6.17373 0.60671 0.83526 1.37826 19.24890 0.93851

25 800000 6.19058 0.66125 0.83826 1.40531 19.70099 0.93853

24 850000 6.22235 0.71709 0.84011 1.43532 20.19421 0.93724

23 900000 6.26200 0.77423 0.84249 1.46685 20.70909 0.93650

22 950000 6.29008 0.82613 0.84448 1.49577 21.18358 0.93444

21 1000000 6.31363 0.87597 0.84535 1.52449 21.65354 0.93445
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would expect by (3.1.2) that Dab --> o as N - 0 and that Dab - 0 N -s IV oth of

these expectations can be explained heuristically in terms of the amount of information

that is available in the time series to describe the attractor. If oni, NV = I distance L is

available, then infinitely more is known about the attractor than if N = 0 and so the mean

absolute difference Dab between the histograms of these two cases would be infinite.

Increasing the number of available distances L from N = 1 to N = 2 doubles the amount

of available information and would result in a finite nonnegative value for Dab. Increasing

the number of distances from N = 2 to N = 3 would increase the amount of information

by 50% and would again reduce the decrease of the mean absolute difference. Finally, as

N -, oo, N - N + 1 and so Dab -* 0 because the amount of information in the two

histograms would be virtually the same. In contrast, the expectation that Dab -- 0 as

N - oo would also follow from an exponential model, but the expectation that Dab - ac

as N -- 0 would not. By (3.1.1), Dab = A + B for N = 0, and A + B ;t oo. The heuristic

argument that the mean absolute difference Dab between the histogram for N = 0 and a

histogram for some N > 0 would be infinite is contradicted by the exponential model.

Linear regressions of the values of the intercept In A and the values of the rate of

decrease R as functions of the increment values AN were also performed. Significant

correlations between the values of both InA and R and the value of AN were found. The

relationship between the intercept InA and AN is shown in Figure 3.2. For this linear

relationship, the slope is 8.941 x 10-6 and the intercept is 12.6556. The rate of decrease
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Figure 3.2. The linear relationship between the constant InA and the increment AN separating series of

lengths N and N + AN for which mean absolute differences Dab were determined. The value of the

correlation coefficient r2 for this relationship is 0.99768.
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R as a function of AN is shown in Figure 3.3. The slope of this line is -4.9500 x 10-7

and the intercept is -1.01503. The correlation coefficient r 2 for the regression of InA on

AN is 0.99768 and for the regression of R on AN it is 0.99740. The results of these

analyses of the relationships between intercepts, rates of decrease, and increment length

can be incorporated into the power law model (3.1.2) as

-exp((8.941 x 10-6)AN+ 12.6556)
I(( 4.9500x 10-7 )AN+l.01503)(31)

where A = exp((8.941 x 10-6)AN + 12.6556), R = ((4.95 x 10-7) AN±+ 1. 01503) > 1, and

B= 0 and where N__ 4, 000, 000 and AN_< 1,000,000.

The interval AN represents the difference in the lengths of the time series for

which mean absolute differences Dab between histograms are determined, and the effect

of increasing AN is to increase the magnitude of the coefficient A and to increase the

magnitude of the rate of decrease R. If the value of AN is large then the representation of

the attractor by N + AN points should be much better than that provided by N points, and

Dab will be greater than it would be for smaller values cf AN. For a given value of N,

mean absolute differences Dab between histograms will be greater for larger AN, so the

coefficient A should be greater. Consequently for any specific value of N, a more rapid

decrease in the mean absolute difference Dab is observed for larger values of AN because

all curves converge on the same floor value B = 0. The constant 1.01503 in the
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Figure 3.3. The linear relationship between the magnitude of the rate of decrease R and the increment

AN separating series of lengths N and N + AN for which mean absolute differences Dab were

determined. The value of the correlation coefficient r2 for this relationship is 0.99740.
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expression for the rate of decrease ensures that R > 1, so this model predicts the expected

decrease in Dab with increasing values of N and N + AN.

The power law relationship (3.1.3) between Dab and N can be used to determine

the proper length of a time series of data needed to approximate the attractor with a

prescribed accuracy. If a power law relationship is established for a given value of AN

and for a given level of statistical confidence, then Dab between two histograms of lengths

N and N + AN can be determined for any value of N, not just those used to create the

curves. If a tolerable value of Dab is established and if AN is fixed, 'hen the value of N

can be determined from (3.1.3) without having to generate several time series and

calculating Dab. This approach is used in section 3.2 to determine the appropriate length

of a control series of data against which to assess the effectiveness of different sampling

strategies. This value of N is of order 106.

3.2. Sampling Strategy and Independence of Samples

In this series of experiments, the relationship between the sampling strategy and

the dependence measure 141 of a subseries of sampled points is examined following the

arguments presented in Section 2.4. In these trials, the number of points of the control

series as well as the numbers I of sampled points are all powers of 2. In each case, a

series of 2,097,152 (221) points was generated, from which the first 1,048,576 (220)

points were discarded, leaving a control series of N = 1,048,576 points from which to
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sample specified numbers of points according to different strategies. As before, the initial

conditions for the time series were x0 = 0. 1, Yo = 0. 1, and to = 0. 2, and the parameters of

the map were set at a = 0. 45 and f = 0. 3.

This control series was divided into m = 8 equal subseries, each having 131,072

points. Thus, the total number I of points sampled from the control series is divided

evenly among the 8 subseries, so each subseries contributes 1/8 •_ 131,072 points to the

total. The independence measure 191 is calculated using a summation version of(2.4.13):

8 128

[= 1 8y 2 "2(Hl,h-Hj,h)(Hk,h-Hi,h)I, where i<j<k<l. (3.2.1)
i=1 h=1

j=2
k=3
1=4

A minor algebraic manipulation allows for the subtraction of alternate histograms j from

I and i from k, and accounts for the factor of 2 in this expression. As in (2.3.1), each

histogram consists of 128 bins. Mean absolute differences Dab between the histograms

composed of all the sampled data and the histogram of the control data were also

calculated according to (2.3.1).

A simple but highly versatile general approach was employed to develop different

sampling strategies. The 8 subseries were further subdivided into any of a number of

windows, from 1 to 4,096, increasing in number by powers of 2. The gap G discussed in

Section 2.4 in these experiments represents the gap between the last sampled point in any
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window and the first sampled point in the following window. Points were then sampled

from these windows according to one of two types of sampling strategies.

In the first type of strategy (Type I), the number of points to be sampled from each

of the 8 subseries was fixed, and the number of windows was varied. This strategy is

illustrated in Figure 3.4. The sampled points used in the calculation of 4 were then

evenly distributed among the windows. Points sampled from the windows included the

first point in the window and then enough consecutive points to obtain the required

number of points from each window. For example, if I = 16,384 total points were

required from the m = 8 subseries, then each subseries would contribute 2,048 points to

the sample. If these 8 subseries were each divided into 512 windows, then the first 4

points from each window would be the ones sampled.

The second type of strategy (Type 1I) is to fix the number of windows for each of

the subseries and then to take the same increasing number of consecutive points from each

window until all the required points of the subseries are sampled. This strategy is

illustrated in Figure 3.5. The number 1/8 of points per subseries ranged from 1024 to the

entire 131,072 points of the subseries, increasing by a power of 2 for each trial. For

example, if each subseries was divided into 64 windows, then the number of points taken

from each window ranged from 16 to 2048.



47

IOOOOOOo000000000000000000000000o I

IOO00000000000000 IOO00000000000000 I

l00000000 l00000000 100000000 100000000 1

10000 10000 10000 10000 10000 10000 10000 10000 1

Figure 3.4. Schematic representation of Type I sampling strategy using a fixed number of points. In this

example, 8 sampled points (filled circles) are divided among (from top to bottom) 1, 2, 4, and 8 windows.

The unfilled circles represent the gap G of unsampled points (24, 12, 6, and 3 points, respectively). This

illustration depicts only one of the 8 subseries used to create the histogram.
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Figure 3.5. Schematic representation of Type II sampling strategy using a fixed number of windows. The

number of sampled points (filled circles) increases from 1 to 8. The unfilled circles represent the gap G

of unsampled points (7, 6, 4, and 0 points, respectively). This illustration depicts only one of the 8

subseries of the control histogram divided into 4 windows.
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3.2.1. Type I Sampling Strategy: Fixed Number of Points

For the Type I strategy, three sets of trials were made, in which samples of

1/8 = 4096, 16384, and 65,536 points were selected from each of the 8 subseries of the

control series. The total numbers of points sampled from the control series were therefore

I = 32,768, 131,072, and 524,288, respectively. The number of windows into which the

selected points in each subseries was distributed varied from I to 4,096. The numbers of

points selected from each window needed to satisfy the total number required for each

trial are included in Table 3.2, along with the length of the gap G between the last point in

a window and the first point in the next window. One of the consequences of this strategy

is that for a given number of points, the gap ratio (the ratio of the number of unsampled

points in a window to the number of consecutive points sampled from that window)

remains constant. For example, if 4096 points are selected from a subseries, then the ratio

of sampled to unsampled points is always 1:31, without regard to the number of windows

into which the subseries is divided. If the subseries consists of only 1 window, then this

ratio is 4,096:126,976. If the subseries is divided into 4096 windows, then this ratio is

1:3 1. In contrast, for 16384 points per subseries this ratio is 1:7, and for 65,536 points

per subseries it is 1:1.

For each trial, the dependence measure I11 of sampled data and the mean absolute

difference Dab between sampled data and the data of the control series were found. Eight

histograms were constructed of the sampled data from each of the 8 subseries and the
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Table 3.2. Type I sampling strategy for a specified number of points in each of 8 subsenes of the control

time series. The leftmost column displays the numbers of windows into which the sampled points are

distributed. Numbers in parentheses indicate the number of consecutive unsampled points G between the

last sampled point of a window and the first sampled point of the next window.

Points per Subdivision 1/8

Windows 40% 16384 65536

1 40% (126976) 16384 (114688) 65536 (65536)

2 2048 (63488) 8192 (57344) 32768 (32768)

4 1024 (31744) 4096 (28672) 16384 (16384)

8 512(15872) 2048(14336) 8192(8192)

16 256 (7936) 1024 (7168) 40% (4096)

32 128 (3%8) 512 (3584) 2048 (2048)

64 64(1984) 256 (1792) 1024 (1024)

128 32(992) 128(8%) 512(512)

256 16 (496) 64 (448) 256 (256)

512 8(248) 32 (224) 128 (128)

1024 4(124) 16(112) 64(64)

2048 2 (62) 8 (56) 32 (32)

4096 1(31) 4(28) 16(16)

Gap Ratio 1:31 1:7 1:1
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dependence I of the data in these 8 subseries was calculated according to (3.2.1). The

sampled data from the 8 subseries for any trial was also consolidated and the histogram of

this pooled data was constructed and the area normalized to that given by a histogram of

131,072 distances. The mean absolute difference Dab between these combined histograms

and a normalized histogram composed of all of the data of the control series was also

calculated using (2.3.1) for each trial. These results were then examined for any

relationship between I14 or Dab and the number of windows as well as for any relationship

between 141 and Dab.

The results for 1/8 = 4096 points are presented in Figure 3.6. No statistically

significant increasing or decreasing trend in either I j or Dab is apparent as the number of

windows is varied. Four local minima are apparent in the curve for 191. The smallest of

these occur at 2, 32, and 128 windows. A single, broader minimum may exist between 16

and 256 windows, although the value of 141 for 64 windows is relatively high. The number

of points per window for these minima is 2048 for 2 windows, and 128, 64, and 32 points

per window for 32, 64, and 128 windows, respectively. A significant correlation between

141 and Dab was found for this set of trials, however. The correlation coefficient r 2 for

these two variables is 0.2889. Thirteen pairs of values are used to determine this

correlation, and so for the associated 11 degrees of freedom, this corresponds to a fairly

high confidence level of between 0.90 and 0.95. This correlation was direct; decreasing

values of 141 are directly related to decreasing values of Dab.
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Figure 3.6. Mean absolute difference Dab (squares) and the dependence measure 14 (diamonds) as

functions of the number of windows into which each subseries is divided for 4096 points.
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The results for 1/8 = 16,384 points are presented in Figure 3.7. Again, no

statistically significant increasing or decreasing trend of either 141 or Dab with the number

of windows was found. The values of 14 that indicate the highest degrees of

independence occur at 1 window, 4 windows, and 512 windows. The number of points

per window for these minima are 16,384 for 1 window, 4096 for 4 windows, and 32 for

512 windows. Unlike the results for 4096 points, no significant correlation between 141

and Dab is evident for this set of trials. The correlation coefficient r 2 for these two values

is 0.1164. For 24 degrees of freedom, this value indicates the confidence in the

correlation is well below 0.90 and so no correlation is accepted.

The results for 1/8 = 65,536 points are presented in Figure 3.8. As in the cases of

4096 points and 16,384 points no statistically significant trend of either 141 or Dab with the

number of windows is apparent. The best values of 14 for these trials are observed at 2

and 4 windows (32,768 points and 16,384 points, respectively), and at 1024 windows (64

points). As for the case of 4096 points, however, a significant correlation between 141 and

Dab was found for these trials. The correlation coefficient r 2 in this case is 0.2674,

corresponding to a confidence level of between 0.90 and 0.95. As before, this is a direct

correlation.

The results of these trials with fixed numbers of points distributed among varying

numbers of windows suggest that distributing the points among several windows serves to

increase the independence of the data over that obtained from using only I window. It
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Figure 3.7. Mean absolute difference Dab (squares) and the dependence measure 14 (diamonds) as

functions of the number of windows into which each subseries is divided for 16,384 points.
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Figure 3.8. Mean absolute difference Dab (squares) and the dependence measure 1 (diamonds) as

functions of the number of windows into which eacit subseries is divided for 65,536 points.
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was not observed, however, that the greatest independence was observed when the points

were distributed among the maximum possible number of windows, and so this is not

necessarily an optimal sampling strategy. The best results were obtained for those

subseries divided into an intermediate number of windows-those containing 32 to 64

consecutive points (64 and 128 windows)-rather than for those containing just 1 point

(4096 windows). Maximizing the number of windows, or minimizing the number of

points per window, does not necessarily yield the most independent data. Significant

correlations between mean absolute difference Dab and dependence 1ý1 were found in two

of the three trials. This result strongly suggests that the less computationally intensive

measure Dab could be substituted for [f in evaluating sampling strategies for other time

series data.

3.2.2. Type HI Sampling Strategy: Fixed Number of Windows

For Type II sampling, the subseries of the control histogram are divided into

specified numbers of windows and the number of sampled points varies. Five trials were

performed, with each of the 8 subserie. -f the control histogram divided into 1, 2, 4, 64,

or 1024 windows. These values for the numbers of windows into which to divide the

subseries were selected to cover a three order-of-magnitude range of values, while also

selecting some of the trials from the Type I experiment for which small values of the

dependence measure 141 were obtained. If cases having smaller values of 141 are selected,
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then these values could be viewed in the context of varying the number of points rather

than varying the number of windows. The number of points sampled from each subseries

was increased incrementally by powers of 2 from 1024 to 131,072 points. The number of

points sampled from each window ranged from I to 128 if the subseries were divided into

1024 windows and ranged from 1024 to 131,072 if the subseries were left undivided. This

strategy is illustrated in Figure 3.5. The numbers of points sampled and their

corresponding gaps G are included in Table 3.3. The gap ratio given by the length of the

gap of unsampled points to the length of the series of consecutive sampled points within a

window decreases as the number of points sampled within a window increases; but for any

given number of sampled points (column in Table 3.3), the gap ratio is the same regardless

of the number of windows into which the subseries is divided.

The dependence measure 141 of sampled data and the mean absolute difference Dab

between histograms of the pooled sampled data from the 8 subseries and the histogram of

the data of the control series were calculated for each sampling of points using (3.2.1) and

(2.3.1), respectively. In these trials, the number I of points was increased for each fixed

number of windows, so the number of points could be treated as an independent variable.

As for the Type I strategy, relationships between this independent variable and I or Dab

were then investigated, as was a relationship between 191 and Dab.

The relationships between Dab and the number of points sampled from each

subseries for each fixed number of windows per subseries are shown in Figure 3.9. As

observed in Section 3.1, the magnitude of Dab decreases with increasing numbers of
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Table 3.3. Type II sampling strategy in which the number of points per window increases and the number

of windows per subseries is specified. Numbers in parentheses indicate the number G of unsampled

points between the last sampled point of a window and the first sampled point of the next window.

Points per Subdivision 1/8

Windows 1024 2048 4096 8192 16384 32768 65536 131072

1024 2048 40% 8192 16384 32768 65536 131072

1 (130048) (129024) (126976) (122880) (114688) (98304) (65536) (0)

512 1024 2048 4096 8192 16384 32768 65536

2 (65024) (64512) (63488) (61440) (57344) (49152) (32768) (0)

256 512 1024 2048 40% 8192 16384 32768

4 (32512) (32256) (31744) (30720) (28672) (24576) (16384) (0)

16 32 64 128 256 512 1024 2048

64 (2032) (2016) (1984) (1920) (1792) (1536) (1024) (0)

1 2 4 8 16 32 64 128

1024 (127) (126) (124) (120) (112) (96) (64) (0)

Gap Ratio 127:1 63:1 31:1 15:1 7:1 3:1 1:1 0:1
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Figure 3.9. Mean absolute differences Dab between histograms of sampled data and the histogram of

data of the control series as functions of sample size N for five different Type II sampling strategies (1, 2,

4, 64, and 1024 windows per subseries).
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sampled points. Again a log-log regression indicated a power law decrease of Dab with

increasing sample size similar in form to (3.1.2). Statistics for these regression analyses

are presented in Table 3.4.

Unlike the discussion in Section 3.1 concerning mean absolute differences between

successive histograms of increasing length, the results here, illustrated in Figure 3.9,

concern mean absolute differences between histograms of data from each sample for a

specified number of windows and the histogram of the data from the entire control series.

The mean absolute difference between histograms of data from trials in which all points

are sampled from all the windows of the 8 subseries and the histogram of the control

series are therefore equal to zero. In the power law regression, these differences could

Table 3.4. Regression statistics for decrease of mean absolute difference Dab with increasing sample size

8/8 for several different numbers of windows. Statistics are for the power law decreases (3.1.2) of mean

absolute difference (with B = 0) shown in Figure 3.9.

Number
of R InA 2

Windows
1 0.58496 3.83754 0.99011
2 0.60159 3.91321 0.99785
4 0.59302 3.89411 0.98724

64 0.54974 3.42916 0.98874
1024 0.55912 3.53096 0.97899
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not be used because the logarithm of zero is undefined, and so the log-log regressions

were performed for all values of Dab and sample size excluding the final values. This

regression model yielded higher correlations of mean absolute difference to sample size

than the exponential model.

Higher rates R of the decrease in Dab with increasing sample sizes were observed

for strategies using 1, 2, or 4 windows per subseries than for 64 and 1024 windows using

the power law model (3.1.2) (Table 3.4). For smaller sample sizes, the values of Dab

were observed to be smaller for the 64 and 1024 windows per subseries strategies (Figure

3.9) As the sample size increases, the range of values of Dab for the five strategies

decreases. The rates of decrease for the strategies involving smaller numbers of windows

must therefore be greater because their curves converge on approximately the same values

of Dab as those for strategies involving many more windows. The mean absolute

difference between sampled data and control series data is not so sensitive to sampling

strategy for greater numbers of points sampled. For example, for 65,536 sampled points

(50% of the available points of the control series), the range of values of Dab is only

0.00,U215, or approximately 3.5% of the greatest value of Dab for 65,536 point samples.

However, if only 1024 points are sampled (less than one percent of the available points of

the control series), then a range of values of Dab of 0.15377, or approximately 20% of the

greatest value of Dab, is observed. For large sample sizes, finding an optimal sampling

strategy may be less beneficial than for smaller sample sizes. It must be borne in mind that

the results presented here are based on comparisons of sampled data with the known
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standard of the control series. That which constitutes large and small for other time series

data may be much more difficult to establish.

The dependence measure 141 of sampled data for the five Type 11 strategies is

shown in Figure 3.10. The overall trend with increasing sample size for each of the five

strategies is an increase in the value of 141, which signifies a loss of independence of the

data in the 8 subseries. The highest value of 11 occurs for 131,072 points and is the same

for all five strategies. This result is not unexpected as it represents the selection of all the

data from the subseries for all five strategies. The most rapid increases in Ij occur for the

I window and 2 window strategies for sample sizes between 4096 and 65,536 points. For

sampling sizes less than 4096 points, no discernible difference exists among the values of

141 for the five strategies, nor does any trend in the values of! 1 with increasing sample

size occur.

3.3. General Conclusions and Recommendations for Further Study

Calculations involving 610 pairs of values of N and N+ AN were performed in

order to determine that the mean absolute difference Dab between histograms representing

the Smale-Williams attractor follows a power law decrease with increasing numbers of

points. Consistently high values of the correlation coefficient r 2 (Tables 3.1 and 3.4)

were observed, and so this conclusion is firmly established statistically. A correlation



63

0.00006-

0.00005 -

0.00004

0.00003 -

0.00002

0.00001 1

0-

1024 2048 4096 8192 16384 32768 65536 131072

Number of Points Sampled

Figure 3.10. The dependence measure 141 of sampled data for five Type II strategies as a function of the

number of points sampled. The individual curves are for I window (squares), 2 windows (diamonds), 4

windows (circles), 64 windows (crosses), and 1024 windows (triangles).
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between the dependence measure 141 and the mean absolute difference Dab for Type I

sampling was observed for only two of three specified numbers of points. This

observation is based on samples from only one control time series. The decrease in Dab

with increasing numbers of windows for a small number of points using a Type II strategy

is also based on samples from only a single control time series. All of the calculations of

mean absolute differences and dependence measures were performed for only one set of

initial conditions and one pair of values for the map parameters a and 40. Additional trials

for the Type I and Type II strategies should be performed using different initial conditions

and map parameters so that means and standard deviations of the different values of Dab

and 141 can be generated and their values compared and evaluated with more statistical

rigor. This might help to confirm (or refute) some of the preliminary observations and

tentative conclusions of the experiments discussed in Sections 3.2.1 and 3.2.2.

In the Type I trials for any specified number of sampled points, variations in the

values of the dependence measure 191 were very small. This result is somewhat

counterintuitive because of the nature of the sampling. In the Type I strategy, a specified

number of points could be sampled as a continuous series of adjacent points in a single

window, as individual points isolated in separate windows, or in some combination of

these patterns. The amount of independent information provided by an individual point

would be expected to be greatest if the point is not influenced by the other sampled points.

If the individually sampled points are separated by long gaps of unsampled points, then the

value of the dependence measure 141 for this sampling strategy should be significantly less
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than that for a sampling of adjacent and presumably highly correlated points. This was not

observed, however, and so it appears that temporally adjacent points are nearly as

decorrelated as sampled points separated by several hundreds of unsampled points. This is

not typical of continuous dynamical systems, particularly not of systems of ordinary

differential equations such as those that describe meteorological processes.

Further investigations of the advantages of different sampling strategies should

involve dynamical systems whose points decorrelate much more slowly. Differentiable

equations that model atmospheric flows are solved numerically and the time steps of

integration might possibly be adjusted to control decorrelation. To date, the value of the

correlation dimension of the attractor of any such model can not be determined

analytically and so this approach is unfeasible. A more tractable approach is to use an

extension of the Smale-Williams attractor for which a continuous time step is introduced

and for which an analytical dimension may be calculated.

The mapping torus of the Smale-Williams attractor is such a dynamical system.

The construction of this system, illustrated in Figure 3.11, begins with the Cartesian

product of a line and the Smale-Williams attractor described in Chapter 2. Taking this

Cartesian product introduces a fourth coordinate s to the coordinates x, y, and t in the

map described by (2.1.12). In the Cartesian product, the point (s,t,x,y) maps to the

point (s+ h,t,x,y), where h is an arbitrary incremental value less than 1 that is set in

advance. Now any point (s,t,x,y) on the attractor is identified with the point

(s + 1, 3t-[3t], axcos(21rt)+ Oix,a•sin(27rt)+ fly) to produce the mapping torus
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s=O S=S' s=s'+h < I s=I
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B

Figure 3.11. The mapping torus eDh of the Smale-Williams attractor, a Cartesian product of the Smale-

Williams attractor and a line. The condition s = s'+h < 1 is depicted in A. A high degree of correlation

between the original point and its image occurs. The condition s = s'+h 2t1 is depicted in B and the

Smale-Williams map is applied in this step. This mapping (B) would result in the same rapid

decorrelation as occurs in the Smale-Williams attractor.
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(illustrated in Figure 3.1 IB). In effect, the constraint 0•_ s < I is applied, and so this

identification requires the map ( h to be defined explicitly on the point (s', t, x, y) as

follows:

) (s' +h, t, x, y) if s'+h < 1

h:( sI, t,x, y)1 (s'+h- 1, 3t-[3t], acos(27rt) +±fx ,asin(2trt)±+Py)if s'+h/ > 1

(3.3.1)

For the second condition of s'+h _> 1, the Smale-Williams map described in (2.1.12) is

applied. By setting h to appropriate values, the decorrelation inherent in the Smale-

Williams attractor can be controlled, with smaller values of h yielding higher correlations.

When s'+h < 1, the degree of correlation between a point and its image is very high

because no twist is applied, but when s'+h> 1, the same rapid decorrelation as observed

for the Smale-Williams occurs. The overall degree of correlation in a time series should

therefore be determined by the ratio of the number of times that the condition s'+h < 1 is

true to the number of times s'+h > 1 is true. If the decorrelation rate is moderated by

choosing an appropriate value of h, then dependence measures 191 of data from this

mapping torus sampled by different strategies may show a much greater range of values

than is shown by the Smale-Williams attractor.

The Hausdorff dimension dH and box-counting dimension dB of the Smale-

Williams attractor are equal by (2.2.5), and so the Smale-Wifliams attractor can be said to

be reasonably regular (Falconer 1990). The Hausdorff dimension dH of the mapping

torus of the Smale-Williams attractor is equal to the sum of the dimensions of its two
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factors, the Smale-Williams attractor itself and the line. By similar arguments to those

presented in Section 2.2, the correlation dimension v of the mapping torus is equal to its

Hausdorff dimension. The dimension of the line is 1, and so the values of the correlation

dimension v and the Hausdorff dimension dH of the mapping torus of the Smale-Williams

attractor can be obtained from

dH = v= 2 +In3/ln(1/1). (3.3.3)

The analytical expression (3.3.3) for the values of dimensions and the slow rate of

decorrelation together make this map suitable not only for the study of the effects of

sampling on the independence of the data and the values of the mean absolute differences,

but they also make it suitable for the study of the effect of sampling on estimates of the

dimensions of an attractor, such as is discussed in the following chapter.
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Chapter 4

SAMPLING STRATEGIES AND ESTIMATES OF THE CORRELATION

DIMENSION OF THE SMALE-WILLIAMS ATTRACTOR

The mean absolute difference Dab between the histogram of a sample of data and

the histogram of a sufficiently long control series of data can be used to assess the

accuracy of the characterization of the Smale-Williams attractor by the sampled data. The

histogram of the control series to which a histogram of sampled data is compared is i'self

an estimate of the true histogram; however, by arguments presented in Section 3.1, this

estimate is sufficiently accurate to be used as a standard of comparison. A representation

of the Smale-Williams attractor by a set of sampled data can also be characterized by an

estimate of its correlation dimension v using the values of x, -,, and t of the sampled

points. The value of the correlation dimension can be estimated using either the approach

of Grassberger and Procaccia (1983) or the approach of Wells et al. (1992) described in

Sections 2.5 or 2.6, respectively. The accuracy of such an estimate by the method of

Wells et al. (1992) can be assessed by directly comparing the estimated value of v with

the analytical value of v given by (2.2.5) for a specified value of P. The conformity of the

sampled data to the relationship between C(e) and v (2.5.3) can be also be used to assess

the accuracy of a characterization of the attractor by sampled data. The dependence
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measure 141 provides an additional criterion with which to assess the quality of a sample of

data. Time series data can be sampled by different strategies described in Section 3.2 and

the accuracy of characterizations of the Smale-Williams attractor by this sampled data can

be assessed using these different criteria. Mean absolute difference, correlation dimension

estimates, and the dependence measure can be determined for each set of sampled data

and these values can be compared to each other for each sampling strategy to determine

any correlations among the different methods of assessing the accuracy of

characterizations of the attractor.

4.1. The Analytical Value of the Correlation Dimension v for Specified Values of

[ and the Distance Formula for the Correlation Function

The analytical value of the correlation dimension of the Smale-Wiiliams attractor

can be determined using (2.2.5) after a value of P has been chosen. For al' of the

experiments concerning mean absolute differences Dab and the dependence measure 141

described in the previous chapter, the value of P3 was set at 0.30. This value of 13 yields a

value of the correlation dimension v of approximately 1.9125. Other values of are used

in preliminary experiments described in Section 4.3 that are designed to assess the utility

of the multiple moment approach of Wells et al. (1992) in estimating the correlation

dimension of the Smale-Williams attractor. In experiments described in Section 4.4 in

which the value of the correlation dimension v is estimated from data sampled according
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to a Type I strategy, a value of ( = 0.3 is again used. In these experiments, the value of

v_= 1.9125 is used as a target value against which estimates of v may be compared.

The correlation function C(e), described by (2.5.1), requires the use of a properly

defined distance function rij = Ili - xjI. One intuitive approach to determining the

distances between points in a three-dimensional phase space would be to use a distance

analogous to the Euclidean distance, such as

rij = /(ti -tj )2 +(xi - xj) 2 +(Yi _ yj)2 . (4.1.1)

However, the coordinate t in the Smale-Williams attractor is related to the angular

displacement 0 = 2xrt between any two points xi = (ti,xi,yi) and Xj = (tj,xj,yj) that

are defined by (2.1.12). As noted in Chapter 2, the Smale-Williams attractor can be

imagined as the stretching and twisting of an initial torus into a folded and contracted

torus. Consequently, distances between points on the attractor are distances between

points on tori, and so distances around the torus can be measured in either of two

directions: displaced from each other by an angle 0 or by an angle 2xr- 0. Because

0•< t < I holds by (2.1.8), a more appropriate expression that ensures that the smaller of

these two angles is always used in determining the distance rij between two points is

ij mint- t-(ti -tj)))2 +(xi _ xj)2 +(Yi yj)2(4.1.2)a412
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In the expressions (2.1.12) that describe the map, a is a scaling factor that determines the

maximum distance between points on the attractor. Curiously, by incorporating a into the

distance function as in (4.1.2), projections of sets of attractor points (illustrated in Figure

2.3) will be the same if the value of only cc is changed. That is, Smale-Williams attractors

belonging to the same value of Pl but to different values of cc are dynamically equivalent.

4.2. Estimates of the Correlation Dimension Using Sampled Data

The accuracy of estimates of the correlation dimension v of the Smale-Williams

attractor can be determined in either of two ways. The first of these is to use the

logarithm of the correlation function C(e) of Grassberger and Procaccia (1983) in (2.5.4)

to relate In C(e) to the correlation dimension v. For any value of E, the value of In F(e)

can be determined by

In F(E) _-=-in C(E) - van(E). (4.2.1)

Values of InF() are determined for all values e for which values of lnC(E) are

determined. These values of In F(e) are calculated using the analytically determined value

of v=- 1.9125 in (4.2.1), and then plotted as a function of E. The interval [ElE2] over

which values of In F(e) are approximately constant is determined by examination of the

plotted values. An example of the relationship between In F(E) and E is illustrated in

Figure 4.1. Once the interval [E], E2] over which the value of In F(e) is independent of E
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Figure 4. 1. The relationship between lnF(e) and e for 1/8 = 256 points in one window. The interval

over which this value was determined to be constant and for which the standard deviation is calculated is

[C,C2] =[0.1,0.2]. The average value InF[el,E2] of lnF(e) on this interval is 0.12 and the standard

deviation a of lnF(e) for InF[ej,e 2 ] is 0.00386.
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is determined and labeled In F[e1,e 2 ], the standard deviation ar of values of In F(e) on

the interval [el,e 2] can be determined and used as an index of the conformity of the

sampled data to the power law relationship (2.5.3) and therefore of the accuracy of the

characterization of the attractor by the sampled data.

To assess the validity of this method when the analytical value for v is not known,

several different artificial values of v were used in (4.2.1) for each set of sampled data to

determine the interval [el, e2] over which In F(e) is constant and to estimate the standard

deviation or on this interval for each value of v. The results of one such test are presented

in Table 4.1 and are for the same sample of data for which values of In F(e) are depicted

in Figure 4.1. For all samples of data, the smallest value of the standard deviation a of

lnF[el,e 2 ] was consistently observed for the analytical value v_-_ 1.9125 and was

observed on the interval [el, e2] = [0.1, 0.2].

Table 4.1. Values of the standard deviation a of lnF(e) on the interval [el,e21 for several artificial

values of the correlation dimension v and the analytically determined value v-_- 1.9125. Values are for

1/8 = 256 points in one window. Standard deviations are determined on the interval [e1,e2] = [0.1, 0.2].

The smallest value of a (0.00386) occurs for the analytical value of v.

v a

1.8500 0.01333
1.9000 0.00474
1.9125 0.00386
1.9200 0.00403
1.9400 0.00648
1.9600 0.00998
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The method of Wells et al. (1992) can be used more directly to assess the accuracy

of an estimate of the correlation dimension. Values of M(p, e, NT) can be calculated from

sampled data using a predetermined value of p in (2.6.1), and these values can be used to

determine the correlation dimension v for values of e using

=pM(p,e, NT) (4.2.2)1(') I- M(p, E, NT)

These values of v((e,p) can be calculated for a range of values of E and plotted as a

function of e. More appropriately, the average values -P(e) of v(e,p) for several values

of p can then be examined over a range of values of e and compared with the analytical

value of the correlation dimension v to assess the accuracy with which the sampled data

characterizes the attractor in phase space.

4.3. Estimates of the Correlation Dimension v for Different Values of

Using the Method of Higher Moments

To determine the specific manner for interpreting (4.2.3) to estimate the

correlation dimension v of the Smale-Williams attractor from a sample of points, three

trials were performed using different values of the contraction parameter P3 in (2.1.12).

The values used in these trials were /3 = 0.3, 3 = 0. 2, and /3 = 1/3, which correspond to

values of the correlation dimension of v_= 1.9125, v_-- 1.6826, and v= 2.0, respectively.
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No sampling strategy was applied in these trials; rather, a series of N = 5000 consecutive

points was used for each case. These points were those that immediately followed a series

of 1,048,576 points that were discarded to ensure that the transient signal present in the

attractor was minimized. As before, the initial conditions of the map were x0 = 0.1,

Yo = 0.1, and to = 0. 2, and the value of cc was 0.45. The values of the moments p used

in these trials were 0.5, 1.0, 1.5, 2.0, 3.0, and 4.0. The values of the radius E for which

distances rij between points were compared ranged from 0 to 1.5, in steps of 0.0075, so

that 200 values of e were used. The average values -v(e) of the correlation dimension v

for all six values of p for each value of E are presented in Figure 4.2 for the three values

of •1.

The results from using this approach for estimating the correlation dimension v are

somewhat ambiguous. No clear plateau is discernible in any curve for any value of 13, and

only for 13= 0.3 (v=- 1.9125) was one of the peaks of the curve close to the analytical

value. This occurred for the peak between e = 0.1 and e = 0.2 and yielded a value of

v = 1.906. The general shapes of the curves are the same for all three values of P3, but

peaks in the curves occurred over different ranges of e for the three values of 13

examined. In the case of P = 1/3 ( v= 2.0), a broader peak is observed than for the other

two values of P, but the estimated value of v is approximately 1.94. For P = 0.2

( v_= 1.6826), the estimated value of v is approximately 1.83. In the remainder of this

thesis, the magnitude of the first peak of each curve is used to determine the correlation

dimension rather than a plateau as is more commonly done.
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Figure 4.2. Estimated values of the average correlation dimension i(e) using the values of vep)

(4.2.3) for the moments p = 0.5, 1.0, 1.5, 2.0, 3.0, and 4.0. Values of vý(e) are estimated for three values

of the contraction parameter 0 (0.2, 0.3, and 1/3). The three analytical values of v are denoted by the

dotted lines.
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The only value of 3 for which a reasonably accurate estimate of v was obtained is

= 0.3. For the higher value of fP that was studied, the estimate of v was lower than the

analytical value, and for the lower value of 1P, the estimate of v was higher than the

analytical value. That a relatively accurate estimate of v was obtained for P3 = 0.3 appears

to be fortuitous. This estimate of v occurred at the first peak in the curve and not at a

plateau, and would have been difficult to discern if the analytical value of v had not been

independently known. This value P = 0. 3 was used in subsequent experiments in which

the accuracy of estimates of the correlation dimension v from data sampled according to

different Type I sampling strategies was assessed. In subsequent experiments the

magnitude of the first peak is compared to the analytical value of the correlation

dimension. Type II sampling strategies are not considered because far greater numbers of

points must be sampled from each subseries, and the number of distances between points

that must be calculated to estimate C(e) increases as the square of the number of points.

4.4. Sampling Strategy and Estimates of the Correlation Dimension

The accuracy of the estimates of the correlation dimension of the Smale-W'dliams

attractor from sets of points sampled according to different Type I strategies can be

judged by comparing calculated values of the correlation dimension -3(e) with the

analytically determined value v. To accomplish this, sets of 2048 and 4096 points from

the control histogram of 1,048,576 points described in Section 3.1 were sampled. As
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before, the initial conditions were x0 = 0.1, Y0 = 0.1, and to = 0.2; the values of the

parameters a and 1P were 0.45 and 0.3, respectively; and the first 1,048,576 points of the

time series were discarded to minimize the transient signal. To sample 2048 or 4096 total

points from the control series, 1/8 = 256 or 1/8 = 512 points were chosen from each of

the 8 subseries. A Type I strategy was used to sample the points, and so constant gap

ratios of 1:511 and 1:255 resulted for samples of 2048 and 4096 points, respectively. For

both 2048 and 4096 points, the subseries were divided into as many as 256 windows from

which a number of consecutive points was sampled. In the case of 4096 points, the 8

subseries were also divided into 512 windows from each of which one point was taken.

As before, the number of windows per subseries increased by powers of 2.

The dependence measure I [ for each set of sampled data was calculated according

to (3.2.1) and the mean absolute difference Dab between the histogram of the pooled data

from the 8 subseries and the normalized histogram of the control series was calculated

according to (2.3.1). For each sample of data, values of v(ep) were calculated using

(4.2.3) for the 200 values of e described in Section 4.3. For each value of e, values of

v(e,p) were calculated for values of p of 0.5, 1.0, 1.5, 2.0, 3.0, and 4.0, and these six

values were averaged to give -ve). These average values were plotted for each set of

sampled data as in Figure 4.2. An index 3v with which to assess the accuracy of these

estimates was devised by taking the absolute difference between the maximum value of

VP(e) and the analytical value of the correlation dimension v, i.e.,
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3Sv= V- max(V(Ez))I. (4.4.1)

The use of the maximum value of -(e) differs from the standard approach of using the

plateau value. The results presented in Section 4.3 suggest that the first peak value yields

the best estimate and should be used since no plateau values are observed.

A second method for determining the accuracy of the estimate of the correlation

dimension from sampled data is to calculate the values of In F(e) for each of the 200

values of e using the analytical value of the correlation dimension v and (4.2.1). These

values are then plotted against their respective values of e, and the standard deviation a

of these values for a region over which they were judged to be constant used as an index

of the accuracy of the estimate. The standard deviations cr of these values of In F(e) over

the interval [el,e 2] = [0.1,0.2] were then used as the index of accuracy.

Relationships between sampling strategies and the values of the mean absolute

difference Dab, the dependence measure 141, and the indices 6v and a of the accuracy of

the correlation dimension estimates were then examined. The relationship between the

mean absolute difference Dab and the dependence measure was also examined to

determine whether a correlation between Dab and 141 exists for these values of 1/8 as it

does for the cases 1/8 = 4096 and 1/8 = 65,536 (Section 3.2.1). The relationships

between the indices 6v and a and the dependence measure 141 were also examined to

ascertain whether such a correlation exists. The mean absolute difference Dab represents

the accuracy of the representation of the histogram of the control series by the histogram

I
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of sampled data, and so the accuracy of representations of the Smale-Williams attractor

identified with a subset of the standard torus and the accuracy of estimates of its

correlation dimension by sampled data can be assessed by comparing Dab with both 6v

and cr. Finally, a correlation between 6v and a may help to substantiate the validity of

these methods in determining the accuracy of estimates of the correlation dimension v.

The relationship between the number of windows into which subseries were

divided and the values of the mean absolute difference Dab and the dependence measure

41 for the case 1/8 = 256 are illustrated in Figure 4.3. No direct correlation between

either the values of mean absolute difference Dab or of the dependence measure 141 and

the number of consecutive points sampled is observed, and no correlation between the

value of the mean absolute differences Dab and the value of the dependence measure 141 is

observed. The smallest value of Dab is observed for 32 windows (8 consecutive points)

and the smallest values of 141 were observed for 16 and 2 windows (16 =nd 128

consecutive points, respectively).

Values of the accuracy indices 3v and a as functions of the number of windows

into which the subseries were divided are depicted in Figure 4.4. As is observed for the

mean absolute difference Dab, no direct correlation exists between either of these indices

and the number of windows. In addition, no correlations exist between either 6v or a

and the dependence measure 141. The smallest value of 6v is observed for 32 windows,

and one of the smaller values of the standard deviation a of In F(e) on (el, 62] is
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Figure 4.3. Relationship between the mean absolute difference Dab (squares) or the dependence measure

11 (diamonds) and the number of windows into which each of the 8 subseries is divided. The total

number of points from each subseries is 1/8 = 256.
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Figure 4.4. Relationship between the standard deviation a of lnF(e) on the interval [el, C2 (circles) or

the absolute difference 8v between the estimated and analytical correlation dimensions (triangles) and the

number of windows into which the subseries is divided. The total number of points from each subseries is

1/8 =256.
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observed for this many windows. Although no correlation between 8v and Dab or

between or and Dab is observed, the concurrence of the smallest values of 3v and Dab

along with small values of or and 191 for the same number of windows (32) suggests that

this specific strategy is optimal for this number of sampled points. A strong correlation

between the accuracy indices 6v and a" is observed that is significant at a confidence level

of 0o.90 to 0.95 (r2 = 0.63043).

The relationship between the mean absolute difference Dab and the number of

windows into which the subseries is divided, as well as the relationship between the

dependence measure 191 and the number of windows, are illustrated in Figure 4.5 for

1/8 = 512 points. As for the case of 1/8 = 256, no significant correlation between the

mean absolute difference Dab and the number of windows or between the dependence

measure 141 and the number of windows is observed, although a slight downward trend in

[11 is evident. Also as before, no correlation between the mean absolute difference Dab

and the dependence measure 141 is observed. The smallest value of Dab is again observed

for 32 windows while the smallest value of 11 is observed for 128 windows. The value of

I14 for 32 windows is among the smaller values of 11, and so this sample retains a

relatively high degree of independence.

Values of the accuracy indices 8v and ar in the relationships with the number of

windows are presented in Figure 4.6. Very weak correlations between the two accuracy

indices 3v and a and the number of windows are observed, with the accuracy of the
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Figure 4.5. Relationship between the mean absolute difference D.b (squares) or the dependence measure

I (diamonds) and the number of windows into which each of the 8 subseries is divided. The total

number of points from each subseries is 1/8 = 512.
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Figure 4.6. Relationship between the standard deviation a of InF(e) on the interval [el,e21 (circles) or

the absolute difference 8v between the estimated and analytical correlation dimensions (triangles) and the

number of windows into which the subseries is divided. The total number of points from each subscries is

1/8 = 512.
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estimate of the correlation dimension v increasing as the subseries is divided into more

and more windows. The correlation coefficients for these relationships are r = 0.24904

(0v) and r2 = 0.59309 (y) , respectively. In addition to the overall trends in 8v and o',

several local minima are discernible in the two curves. One of these occurs for the

standard deviation a of In F(e) on the interval [el ,e2] for 16 windows, and one occurs at

32 windows for the difference 3v between the estimated and analytical values of the

correlation dimension. Although minima in the mean absolute difference Dab and 3v

coincide, no overall correlation between Dab and 3Sv is observed. In addition, no

correlation between mean absolute difference Dab and the standard deviation a of In F(e)

on the interval [el,e 2] is observed. As occurred for 1/8 = 256 points, no correlation

between the dependence measure 141 and a or between the dependence measure 141 and

8v was observed. A significant correlation (r 2 = 0.36288) between the two accuracy

indices &v and a is observed, as with the case 1/8 = 256 points. This relationship is

significant at the 0.90 to 0.95 confidence level. Finally, both the values of 3v and the

values of a are significantly less for 1/8 = 512 points than for 1/8 = 256 points. This

reflects the greater accuracy of estimates of the correlation dimension using a greater

number of points.
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4.5. General Conclusions

The results presented in Section 4.4 may be considered along with those discussed

in Chapter 3 to produce several general conclusions concerning the utility of different

sampling strategies. Although no correlation between the dependence measure I j and the

mean absolute difference Dab is observed for 1/8 = 256 points or 1/8 = 512 points,

correlations were observed for 1/8 = 4096 points and for 1/8 = 65,536 points. Thus the

identification of the Smale-Williams attractor with a subset of the standard torus by a

specified number of points may be better characterized by sampled data with a higher

degree of independence, but also requires a minimum amount of data between 512 and

4096 points. The correlation between Dab and 141 is not firmly established and requires

the sampling of a relatively large number of points. No correlation was observed between

the dependence measure 191 and either of the indices 6v or a of the accuracy of estimates

of the correlation dimension v; however all estimates of v were made for only 1/8 = 256

points or 1/8 = 512 points. The number of points required to obtain a correlation between

the mean absolute difference Dab and the dependence measure 141 is much higher than the

maximum number of points that could practically be used to estimate the correlation

dimension. Unfortunately, no direct comparison can be made between the relationship

between Dab and 11, and the relationship between either 8v or a and I because the

former relationship requires a much greater number of points to establish than can be used

to establish the latter.
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Strong correlations between 6v and or were observed for both 1/8 = 256 points

and 1/8 = 512 points. The standard deviation a of In F(E) over the interval [El,E2]

provides an accurate method for determining the value of the correlation dimension v

without prior knowledge of the value of v, as shown in Table 4.1. The method of Wells

et al. (1992) provides an accurate estimate of the value of the correlation dimension v

only in the case of ft = 0.3 and requires prior knowledge of the value of v. The

correlation between values of 6v and a may therefore only occur for (i = 0.3, and the use

of 3v as an index of accuracy may be valid for only this value of f. The use of a as an

index of accuracy, however, requires that an interval over which In F(E) is constant be

determined subjectively. This interval may not be discernible for all values of ft.

No direct relationship between the accuracy of the representation of the attractor

by a histogram, as measured by the mean absolute difference Dab, and the accuracy of the

characterization of the attractor by an estimate of the correlation dimension, as measured

by 6v and a, was observed. Some concurrence among the optimal values of each of

these indications of accuracy were observed, however. For both 1/8 = 256 points and

1/8 = 512 points, minimum values of both the mean absolute difference Dab and the

absolute difference 6v were observed when the 8 subseries were divided into 32 windows.

The values of the dependence measure 141 and the standard deviation a of In F(e) on the

interval [61, C2] were also comparatively small for this number of windows. For

1/8 = 4096 a local minimum of mean absolute difference Dab was observed for 32

windows (128 consecutive points per window followed by a gap of 3968 unsampled
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points). Thus, for the particular time series generated for this attractor, an optimal

sampling strategy of 32 windows in each of 8 subseries for this time series is indicated.

This conclusion does not necessarily imply that this sampling strategy is the specific

optimal one for all time series generated by this attractor, but rather that if the total

number of sampled points is restricted, then the use of both consecutive points and

substantial gaps in the series is necessary to acquire the set of points that best

characterizes the attractor.

This general approach to sampling can be used for other time series generated by

this and other attractors. If the correlation dimension v can be determined analytically,

then either 3v or or can be used to assess the accuracy of estimates of v from sampled

data. The correlation dimension for series of observations, for most mathematical

dynamical systems such as the Henon attractor, and for meteorological models such as the

Lorenz (1963) attractor, can not be known in advance, however. If the correlation

dimension v cannot be known in advance, values of C(E) must be calculated for values of

E and these values, along with values for the correlation dimension v, substituted into

(4.2.1) to determine values of in F(e). These values can be plotted and an interval

[IlE2] over which lnlF(e) is constant can be determined. Standard deviations a may

then be determined and the value of v that yields the smallest value of o" will be the best

estimate of the correlation dimension. This approach works very well even though the

graph of v versus e does not show a plateau at the analytic value for v.
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It is apparent that the characterization of an attractor by either a histogram or by

an estimated correlation dimension for samples of data is affected by the strategy with

which that data is sampled. The interpretation of this property is somewhat subjective and

requires consideration of several factors, including the dependence of the data within the

sample, the mean absolute difference between the histogram of the sampled data and the

histogram of the control series, and the accuracy of estimates of the correlation dimension

from the sampled data. If these factors are considered after several sampling strategies are

applied to the time series data, then an optimal sampling strategy may be selected. The

advantage of choosing an optimal sampling strategy is greatest when only a small number

of points is available. The results of the experiments with Type II sampling strategies

indicate that a far greater advantage is achieved if the number of sampled points is

increased. It is more likely that if an observed natural variable (such as oxygen isotope

ratio) or if model output is used to determine a correlation dimension, then the number of

available points may be limited and the number of points that can be used to perform the

calculation may be restricted. Therefore, an optimal sampling strategy should be used.

The specific strategy for a particular time series can only be determined subjectively, but

the results presented here indicate that some combination of consecutive points separated

by substantial gaps in the data is optimum. It may be necessary to sample consecutive

points to retain details of the fine structure of the attractor represented by the time series,

while gaps of unsampled data in the time series may be necessary to ensure that sampled

data are independent and so provide the greatest amount of new information.
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